Soft tissues such as tendon, ligament and cartilage are combinations of matrix proteins and fluid. In each of these tissues the main strength bearing element is collagen, although the amount and type of collagen varies according to the function each tissue must perform. Elastin is also a major load-bearing constituent within skin, the vasculature, and connective tissues. The function of tendons is to connect muscle with bone and is subjected to tensile loads. Tendons must be strong to facilitate movement of the body while at the same time remaining compliant to prevent damage to the muscle tissues. Ligaments connect bone to bone and therefore are stiffer than tendons but are relatively close in their tensile strength. Cartilage, on the other hand, is primarily loaded in compression and acts as a cushion in the joints to distribute loads between bones. The compressive strength of collagen is derived mainly from collagen as in tendons and ligaments, however because collagen is comparable to a "wet noodle" it must be supported by cross-links of glycosaminoglycans that also attract water and create a nearly incompressible tissue capable of supporting compressive loads.
Recently, research is growing on the biomechanics of other types of soft tissues such as skin and internal organs. This interest is spurred by the need for realism in the development of medical simulation.
No comments:
Post a Comment